
Generic Programming

in POOMA and PETE

James A. Crotinger, Julian Cummings, Scott Haney,
William Humphrey, Steve Karmesin, John Reynders,

Stephen Smith, and Timothy J. Williams

Los Alamos National Laboratory; Los Alamos, NM 87545

Abstract. POOMA is a C++ framework for developing portable sci-
enti�c applications for serial and parallel computers using high-level
physical abstractions. PETE is the expression template library used by
POOMA. This paper discusses generic programming techniques that are
used to achieve exibility and high performance in POOMA and PETE.
POOMA uses an engine class that factors the data representation out of
its array classes. PETE's expression templates are used to build up and
operate e�ciently on expressions. PETE itself uses generic techniques to
adapt to a variety of client-class interfaces, and to provide a powerful
and exible compile-time expression-tree traversal mechanism.

1 Introduction

POOMA (Parallel Object-Oriented Methods and Applications) is an object-
oriented framework for developing scienti�c computing applications on platforms
ranging from laptops to parallel supercomputers [1, 2]. POOMA includes C++
template classes representing high-level mathematical abstractions such as ar-
rays, particles, and �elds. POOMA objects can be used in data-parallel expres-
sions, with the parallelism encapsulated in the underlying framework. Expres-
sion creation and manipulation facilities are provided by PETE, the Portable
Expression Template Engine.

This paper discusses generic programming techniques used to achieve ex-
ibility and high performance in POOMA II and in PETE. POOMA II, cur-
rently under development, is a redesign of POOMA intended to further increase
expressiveness and performance. POOMA arrays (the \II" will henceforth be
understood) delegate data allocation and element access to a new engine class,
allowing the array class to provide a uniform interface, including array expression
capability, for a variety of data formats. Using PETE, POOMA separates the
representation of an expression from its evaluation, allowing POOMA to provide
multiple expression evaluation mechanisms. The simplest mechanism inlines the
entire evaluation in a manner similar to conventional expression-template array
classes. Alternatively, an expression can be subdivided into expressions on sub-
domains of the arrays, and these sub-expressions can be evaluated independently
by multiple threads.



2 James A. Crotinger et al.

PETE uses generic techniques to avoid assumptions about client-class inter-
faces and to provide a powerful and exible expression tree traversal mechanism.

This paper is organized as follows. Section 2 discusses the engine abstraction.
Section 3 gives a brief introduction to expression templates. Section 4 describes
the use of PETE to add expression template capability to client classes, and
the method by which PETE performs expression object manipulations, includ-
ing evaluation. Section 5 concludes the paper with a discussion of POOMA's
expression-engine, an engine that allows expressions to be used a arrays.

2 Arrays and Engines

Many scienti�c computing applications require data types with multidimensional
array semantics, but with a variety of underlying data structures. Examples
range from regular arrays having Fortran or C storage order, to banded or
sparse matrices, to array-like objects that compute their elements directly from
their indices. One could model these data types using an inheritance hierarchy.
An abstract base-class would de�ne the interface, and descendent classes would
override virtual functions to deal properly with their internal data structures.
Unfortunately, the cost of virtual function calls in the inner loop of an array
expression is prohibitive. Compile-time techniques are required to satisfy the
performance requirements of most scienti�c applications.

POOMA's Array class achieves the desired exibility by factoring the data
representation into a separate engine class. The Array provides the user interface
and expression capability, while the engine provides data storage and mapping
of indices to data elements.

All engines are specialization of an Engine template class:

template <int Dim, class T, class EngineTag> class Engine { };

For example, a brick-engine, which stores a contiguous block of data that is
interpreted as a multi-dimensional array with Fortran storage-order, is declared:

class Brick {};

template <int Dim, class T> class Engine<Dim,T,Brick>;

Partial specialization on an engine-tag is used so that Array can provide reason-
able default template parameters:

template <int Dim, class T=double, class EngineTag=Brick>

class Array;

The Array class delegates individual element access to the engine class, which
will return the appropriate element in the most e�cient manner possible.

Note that the array is not the container of the data, it is a user interface
for manipulating the data. As a result, a \const Array" is not what one might
think. The following is completely legal:



Generic Programming in POOMA and PETE 3

Array<1> a(10);

const Array<1> & ar = a;

ar(4) = 3.0;

The assignment is allowed because it does not modify the Array object. This
is similar to the distinction between an STL container and an STL iterator.
POOMA's ConstArray class is a read-only array class that is analogous to the
STL const iterator. ConstArray is also the base class for Array. Not only is
this natural from an implementation standpoint (Array extends ConstArray by
adding assignment and indexing that returns element references), but it allows
an Array to be passed as argument to a function that takes a ConstArray. For
conciseness, this paper will focus on properties of the Array class. However, most
of this discussion applies to ConstArray as well.

POOMA domain objects can be used to select a subset of an array. Rather
than providing a special subarray class, POOMA makes further use of the
engine concept: subscripting with a domain object creates a new Array ob-
ject that has a di�erent engine, a view-engine. View-engines reference a subset
of the data owned by some other engine. For example, a brick-view engine,
Engine<Dim,T,BrickView>, can be used to access any constant-stride, regular
subset of points managed by a brick-engine.

The pairing of storage-engines and view-engines is handled via a traits class:

template <class Engine, class Domain> struct NewEngine { };

template <int Dim, class T>

struct NewEngine< Engine<Dim,T,Brick>, Range<Dim> > {

typedef Engine<Dim,T,BrickView> Type_t;

};

where Range<Dim> is a domain class that speci�es a constant stride, rectangular
subset of the points on which the brick-engine is de�ned. For example:

Array<1> a(10); // {a(0), a(1), ... a(9)}

Range<1> I(4,8,2); // {4,6,8}

Array<1,double,BrickView> b = a(I); // b(0) = a(4), ...

View-engine arrays will rarely be explicitly declared. However, these are con-
structed automatically in many array expressions, such as the following centered-
di�erence:

Array<1> a(10), b(10);

Interval<1> I(1,8);

a(I) = b(I+1) - b(I-1);

where Interval<Dim> is a unit-stride version of Range. The last expression will
create temporary view-arrays that will appear in the expression template object
that is manufactured by PETE.



4 James A. Crotinger et al.

3 Expression Templates

Our goal is to write array expressions, such as

A = B + 2 * C;

and achieve the same e�ciency as with explicit loops. Overloading the various
operators to directly perform their operations cannot achieve this goal as eval-
uation will then happen in a pairwise fashion and involve multiple temporaries.
E�cient evaluation requires the use of expression templates [3, 4, 5, 6].

=

A +

*B

2 C

� H

� H

� H

Fig. 1. Parse tree for the
expression A = B + 2 * C.

Expression templates are a mechanism by
which the parse tree for an expression is repre-
sented by a recursive template type. Both the
type and an object of that type are manufactured
by the overloaded operators as the expression is
parsed. For instance, the expression A = B + 2 *

C is represented by the parse tree shown in Fig. 1.
In PETE, this parse tree would be encoded in an
object of type

Expression< TBTree<OpAssign, Array1,

TBTree<OpAdd, Array2,

TBTree<OpMultiply, Scalar<int>, Array3> > > >

where TBTree<Op,E_l,E_r> is a template class that stores an applicative tem-
plate object, of type Op, and left and right subexpression, of types E_l and E_r.
Array1, Array2 and Array3 are the types of A, B, and C. The Expression object
can be used to e�ciently evaluate the expression, as will be explained below.

4 PETE

PETE provides tools to add expression template capability to client classes.
Generic techniques are used to adapt to a variety of class interfaces and to
minimize the impact on client classes. Unlike other expression template imple-
mentations, PETE separates the construction of the expression object from the
operations that can be performed on that object, allowing functors to be written
that perform general purpose parse-tree traversal at compile time.

PETE is an adaptable expression template library similar to that described
by Furnish [6]. PETE can be used in two modes. The method demonstrated here
uses a combination of inheritance and templates, similar to the approach used
in Ref. [6], to enable the client class to be interpreted as a terminal (leaf node)
in the parse tree.1 For example, consider a simple one-dimensional vector class,
Vec3, that wraps a double[3] array:

1 This template idiom was �rst discussed by Barton and Nackman in [7].



Generic Programming in POOMA and PETE 5

class Vec3 : public Expression<Vec3> {

double d[3];

// . . .

};

PETE can also be used in a completely external manner, requiring no mod-
i�cations to the client class. There are advantages and disadvantages to each
approach, and the latter will be discussed briey at the end of the section.

Unlike Furnish's Indexable base class, Expression makes no assumptions
about the client's interface. Rather, Expression provides member functions that
perform static up-casts to the daughter type:

template<class WrappedExpr>

class Expression {

public:

typedef WrappedExpr Wrapped_t;

Wrapped_t & peteUnwrap()

{ return *static_cast<Wrapped_t *>(this); }

const Wrapped_t & peteUnwrap() const

{ return *static_cast<const Wrapped_t *>(this); }

};

Using these members, functions that operate on the terminals can directly apply
the client's methods.

When using PETE in this mode, the client class must provide two typedefs,
Element_t and Expression_t, and a member function:

const Expression_t &makeExpression() const;

Element_t is the element-type for the container. Expression_t and make-

Expression allow the client class to specify an object of a di�erent type to
be used to generate the client's values. For example, some classes provide STL-
like iterators rather than indexing. In this case, Expression_t would be the
iterator type, makeExpression would construct and return an iterator object,
and the iterator objects, not the client objects, would appear as terminals in the
parse tree that PETE constructs. For clients that can e�ciently produce their
values directly (via indexing, internal cursor incrementing, etc.), Expression_t
should be the client class itself.

Vec3 can be indexed directly, so the following must be added to its public
interface:

typedef double Element_t;

typedef Vec3 Expression_t;

const Vec3 &makeExpression() const { return *this; }

These are all that are required for PETE to build expression objects from ex-
pressions involving Vec3 objects. PETE's overloaded operators will recursively
build an expression object, such as that described in Sect. 3, with Vec3 objects
at the leaves. A bit more work is require to evaluate the expression.



6 James A. Crotinger et al.

PETE operates on expressions using a template metaprogram that recur-
sively walks the parse tree, applying a generic tag-functor at the terminals and
a generic tag-combiner at the non-terminals. Tag-functors are specializations of
the class:

template <class FTag, class Expr>

struct TagFunctor {

typedef ???? Type_t;

static Type_t apply(const Expr &e, const FTag &f);

};

This class must de�ne a static member apply that takes the tag-object f and
operates on the expression object e in the appropriate manner. It must also
export the return type, Type_t (indicated by ???? here and below since C++
has no mechanism for declaring that a class will export a particular typedef).

At a minimum, the client class must provide a specialization of TagFunctor
that returns the values of its elements. For example, in order to evaluate a
Vec3 object at index i, we de�ne a tag indicating this purpose, and specialize
TagFunctor to take the appropriate action:

struct EvalFunctor1 {

int i_m;

EvalFunctor1(int i) : i_m(i) {}

};

template <>

struct TagFunctor<EvalFunctor1,Vec3::Expression_t> {

typedef Vec3::Element_t Type_t;

static Type_t apply(const Vec3 &a, const EvalFunctor1 &f)

{ return a[f.i_m]; }

};

Note that the EvalFunctor1 object carries the index with it.
The remaining task is to write Vec3's assignment operator. The recipe for

this is fairly straight-forward, but �rst the full traversal functionality will be
explained as it has a number of uses.

In order to evaluate the expression, the traversal needs to combine the values
returned by the tag-functor using the appropriate operators. This is accom-
plished with a special tag-combiner. For binary operators, tag-combiners are
specializations of

template<class A, class B, class Op, class CTag>

struct TagCombine2 {

typedef ???? Type_t;

static Type_t combine(A a, B b, Op op, const CTag &c);

};

This class must de�ne a static member combine that takes the tag-object c and
the operator object op, and operates on the expression objects a and b in the



Generic Programming in POOMA and PETE 7

appropriate manner, returning some result. It must also export the return type.
Note that A and B may be reference types|it is up to the various TagFunctor
specializations to de�ne their return types appropriately if reference semantics
are needed.

For the purposes of evaluating the expression, PETE uses an empty tag
structure OpCombineTag, specializing TagCombine2 as follows:

template<class A, class B, class Op>

struct TagCombine2<A,B,Op,OpCombineTag> {

typedef typename BinaryReturn<A,B,Op>::Type_t Type_t;

static Type_t combine(A a, B b, Op op, OpCombineTag)

{ return op(a,b); }

};

Here the applicative template object op is applied to the subexpression values
and the result is returned. OpCombineTag serves only as a tag; the tag-object is
not involved in the combine operation.

BinaryReturn is a traits class that uses C++ operator semantics and pro-
motion rules to compute the type that results when the binary operator op is
applied to the subexpressions a and b. This class could be implemented by enu-
merating all possible specializations, but this quickly becomes unwieldy. Instead,
the type is computed via a somewhat complex set of template classes. While this
is an important example of generic programming in PETE, the details are be-
yond the scope of this paper. We note, however, that the scheme is designed to
be extensible by users.

Finally, we come to the traversal of the parse tree. This is handled by the
ForEach template class, which has a familiar structure:

template<class Expr, class FTag, class CTag>

struct ForEach {

typedef ???? Type_t;

static Type_t

apply(const Expr &e, const FTag &f, const CTag &c);

};

ForEach de�nes an apply method that operates on the expression with either f
or c, depending on whether the expression is a terminal node or not. The default
de�nition assumes that the expression is a terminal node, and thus applies the
TagFunctor:

template<class Expr, class FTag, class CTag>

struct ForEach {

typedef typename TagFunctor<FTag,Expr>::Type_t Type_t;

static Type_t

apply(const Expr &expr, const FTag &f, const CTag &)

{ return TagFunctor<FTag,Expr>::apply(expr, f); }

};



8 James A. Crotinger et al.

The recursion is performed by specializations of ForEach for the various
types of non-terminal nodes. For example, binary expressions are handled by
specializing on TBTree as follows:

template<class Op, class A, class B, class FTag, class CTag>

struct ForEach< TBTree<Op, A, B>, FTag, CTag >

{

typedef typename ForEach<A, FTag, CTag>::Type_t TypeA_t;

typedef typename ForEach<B, FTag, CTag>::Type_t TypeB_t;

typedef typename

TagCombine2<TypeA_t, TypeB_t, Op, CTag>::Type_t Type_t;

static Type_t apply(const TBTree<Op, A, B> &expr,

const FTag &f, const CTag &c) {

return TagCombine2<TypeA_t, TypeB_t, Op, CTag>::

combine(

ForEach<A, FTag, CTag>::apply(expr.left(), f, c),

ForEach<B, FTag, CTag>::apply(expr.right(), f, c),

expr.value(),

c );

}

};

The �rst two typedefs compute the types that will be returned by application of
ForEach::apply to the left and right subexpressions of the TBTree, and the third
speci�es the type that this ForEach::apply will return. The apply method re-
cursively calls ForEach::apply on the left and right subexpressions. The results
are then passed, along with the TBTree's operator object (the \value" stored
by the TBTree node) and the combine-tag object, to TagCombine2::combine.
Finally, the result of this call is returned. Note that all of this occurs during
inline template instantiation.

PETE also specializes ForEach for unary nodes, which are used to represent
unary operators and element-wise function calls, and ternary nodes, which are
used to represent where-expressions. These are quite similar to the above.

Note that ForEach does a post-order traversal of the parse tree, visiting a
TBTree's \value" after visiting its children. This is the appropriate traversal
for expression evaluation. One can write similar functors to do more general
traversals. For instance, a functor that prints a representation of the expression
(without building that representation in a bu�er) requires a more general traver-
sal. Although PETE does not include more general traversal functors, they are
not di�cult to construct once PETE's ForEach functor is understood.

ForEach::apply could be written directly as a template function, as could
the combine and applymethods of the tag-combiners and tag-functors. However,
the Type_t traits that these classes export greatly simplify the rest of the code,
so it seems more natural to put the implementation of the functor methods in
the respective functor classes, providing template function wrappers where this
simpli�es the user interface.



Generic Programming in POOMA and PETE 9

Such a wrapper is provided for ForEach::apply. This is handy since template
functions can deduce their template parameters from their argument types:

template<class Expr,class FTag,class CTag>

inline typename ForEach<Expr,FTag,CTag>::Type_t

forEachTag(const Expr &e, const FTag &f, const CTag &c) {

return ForEach<Expr,FTag,CTag>::apply(e, f, c);

}

Now that the evaluation process has been explained, we can write the assign-
ment operator for the Vec3 class:

template <class Expr>

Vec3 &operator=(const Expression<Expr> &exp)

{

Expr e = exp.peteUnwrap();

d[0] = forEachTag(e, EvalFunctor1(0), OpCombineTag());

d[1] = forEachTag(e, EvalFunctor1(1), OpCombineTag());

d[2] = forEachTag(e, EvalFunctor1(2), OpCombineTag());

return *this;

}

This function is almost trivial: forEachTag is called, passing it the expression,
an EvalFunctor1 object that propagates the index to the terminal nodes, and an
OpCombineTag object that serves only to choose the TagCombine2 specialization
that applies the TBTree's operator to the results returned from its children.

With the de�nition of the assignment operator, our Vec3 class has all of the
features necessary to use expression templates. The following code snippet will
now compile and run:

Vec3 a, b, c;

b[0] = 10; b[1] = 3; b[2] = 2;

c = 1;

a = b + 2 * c;

Handling of scalars is provided by PETE, which de�nes a Scalar<T> template
that is PETE-aware. The �nal expression will compile to the equivalent of:

d[0] = b[0] + 2 * c[0];

d[1] = b[1] + 2 * c[1];

d[2] = b[2] + 2 * c[2];

which is exactly the desired result.
If we were instead dealing with a class that provided an iterator interface,

the example would be only slightly more complicated. As mentioned above, we
would have to provide a TagFunctor specialization, say on EvalFunctor0, that
dereferenced the iterator, and another, say on Increment, that incremented the
iterator. The assignment operator would then look something like



10 James A. Crotinger et al.

template <class Expr>

Vec &operator=(const Expression<Expr> &exp) {

Expr e = exp.peteUnwrap();

iterator i = begin();

while (i != end()) {

*i++ = forEachTag(e, EvalFunctor0(), OpCombineTag());

(void) forEachTag(e, Increment(), NullCombineTag());

}

return *this;

}

Here the �rst forEachTag returns the value of the right-hand side for the current
iterator position and assigns it via the local iterator. The second forEachTag

bumps the iterator. Its return value is ignored. Note that apply takes its Expr
argument as a const reference. This is necessary since expression objects are
often temporaries. Some tag-functor specializations, such as Increment, will
have to cast away the const-ness in order to increment the iterators. Obviously
this requires some care.

Evaluation is not the only use for ForEach. Another example is checking
conformance of dynamic arrays. With the proper specializations, the code to do
this would look something like

Expr e = exp.peteUnwrap();

int size = forEachTag(e, SizeTag(), AssertEqTag());

Here TagFunctor<SizeTag,Expr>::apply would return the size of each termi-
nal, and TagCombine2<A,B,Op,AssertEqTag>::combine would assert that the
values were equal, and if they were, it would return the value.2 In POOMA,
this idea is extended to checking domain conformance, returning the common
domain as a result.

ForEach can also be used to construct a new expression tree from the original
one. POOMA uses this capability to build expression trees whose terminal nodes
contain views of the terminal arrays in the original tree.

As was mentioned earlier, PETE can be used without modifying the client
class. Instead, the required functionality is put in an external traits class, Make-
Expression. Unfortunately the assignment operator cannot be handled in this
manner since C++ requires that it be a member function. As a result, a com-
pletely external implementation can be only be achieved if the user is willing
to forgo assignment for an external assign function. The biggest disadvantage
of the external approach is that clients must de�ne the appropriate overloaded
operators to build the expression elements. PETE includes an example PERL
script that is used by POOMA for this purpose. While this is more complicated
to implement than the inheritance approach, it does avoid certain problems
due to subtleties of the C++ template matching algorithm. POOMA employs a
mixed approach, using MakeExpression, generated operators, and an overloaded
assignment operator.

2 Life is actually a bit more complex due to interactions with Scalar<T>.



Generic Programming in POOMA and PETE 11

5 Expression-Engine

As we have seen, an expression object can be used to generate an optimal set of
loops for evaluation, and it can be manipulated by PETE functors to query its
properties, build new trees, etc. However, an expression cannot be passed to a
function expecting an Array, which is a desirable capability. Implicit conversion
from expressions to arrays will not work as these are not performed when match-
ing templates. Even if they were, it would be undesirable to create a temporary
to hold the result. POOMA's engine architecture provides an elegant solution to
this problem. An engine object can be constructed that contains an expression
object and uses functors to index the expression. POOMA implements this as:

template <int Dim, class T, class Expr>

class Engine<Dim,T,ExpressionTag<Expr> > ;

PETE's template machinery is used to e�ciently calculate values when the array
is indexed, avoiding unnecessary evaluation.

As a result, any template function that takes a ConstArray having an ar-
bitrary engine type can be called with an array expression. For example, if we
have the function

template<int Dim, class T, class ETag>

T trace(const ConstArray<Dim,T,ETag> &a) {

T tr = 0;

for (int i = 0; i < a.length(0); ++i) { tr += a(i,i); }

return tr;

}

Then trace(B+2*C) sums the diagonal components of B+2*C without computing
any of the o�-diagonal values.

Adding an Array interface to an expression also simpli�es the evaluation
code. POOMA exploits the separation of expression construction and evaluation
by deferring the evaluation to a separate set of template classes, called eval-

uators . The Array assignment operator constructs a new array whose engine
contains the expression *this = rhs; i.e., an expression with the element-wise
assignment operator at the root of the tree. This new array is then handed o�
to the evaluator. A detailed discussion of evaluators is beyond the scope of this
paper. However, the simplest evaluators ultimately expand to the following loop
(for a two-dimensional array):

for (int i = 0; i < n0; ++i)

for (int j = 0; j < n1; ++j)

expr(i,j);

where expr is the Array object passed to the evaluator.



12 James A. Crotinger et al.

6 Summary

This paper has presented generic techniques used in POOMA and PETE to
achieve exibility without sacri�cing e�ciency. The POOMA array-engine ab-
straction separates the representation of an array from its interface. This greatly
simpli�es the development of new array types as one need only build the appro-
priate engine. The Array class provides the interface, including the interaction
with expression templates.

POOMA's expression templates are packaged as a separate, reusable pack-
age, PETE, that makes extensive use of traits, template metaprograms, and
other generic techniques to maintain container-independence and to simplify
type computations. PETE can be used via inheritance, in which case one makes
minor additions to the client's interface, and writes an assignment operator that
takes an expression object and uses the ForEach functor to do the evaluation.
PETE can also be used in a completely external mode, or in a mixture of the
two.

POOMA further exploits the separation of the expression and its evaluation.
Arrays can have expression-engines, allowing expressions to be passed to func-
tions expecting ConstArray objects, with expression evaluation occurring when
the array is indexed. Furthermore, arrays delegate evaluation of expressions to
separate evaluator objects, allowing specialization of evaluators for certain exe-
cution environments and certain types of terminal engines.

Acknowledgements

We would like to thank Geo�rey Furnish and Todd Veldhuizen for many valuable
discussions. The research described here was performed under the auspices of the
U. S. Department of Energy by Los Alamos National Laboratory under contract
No. W-7405-Eng-36.

References

[1] John Reynders et al. POOMA: A framework for scienti�c simulations on parallel
architectures. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming

using C++, pages 553{594. MIT Press, 1996.
[2] William Humphrey, Steve Karmesin, Federico Bassetti, and John Reynders. Opti-

mization of data-parallel �eld expressions in the POOMA framework. In ISCOPE

'97, December 1997. Marina del Rey, CA.
[3] Scott Haney. Is C++ fast enough for scienti�c computing? Computers in Physics,

page 690, November 1994.
[4] Todd Veldhuizen. Expression templates. C++ Report, pages 26{31, June 1995.
[5] Scott W. Haney. Beating the abstraction penalty in C++ using expression tem-

plates. Computers in Physics, page 552, November 1996.
[6] Geo�rey Furnish. Disambiguated glommable expression templates. Computers in

Physics, page 263, May 1997.
[7] John J. Barton and Lee R. Nackman. Scienti�c and Engineering C++. Addison-

Wesley, 1994.


